Innovative Technologies for the Protection of Historical Structures against Earthquakes
Keywords:
historical structures, preservation, innovative methods, reversibilityAbstract
Cultural heritage buildings are special structures and must be protected from natural disasters preserving at the same time their authenticity. In the seismic areas, one of the building classes that is consistently exposed to seismic risk is the one constituting the architectural heritage of the region. To minimize further destruction under future seismic activity it is necessary to reinforce the existing structures that are more vulnerable. As a consequence, new technological systems are needed, able to provide solution not only to specific structural or architectural problems, but also aiming at improving the global performance of the construction. Similarly, great attention is paid not only to reliability and durability of intervention methods, but also to the possibility to be easily monitored and removed if required, according to the widely shared policy, aiming at the safeguard of existing buildings, in particular in case of historical and monumental works, from inappropriate restoration operations.
This study aims to represent innovative technologies and strategies to preserve the cultural heritage structures against earthquake effect. In particular, the application of fibre reinforced polymers and structural control systems are explained. Suitability of the strategies to architectural, historical and structural features and reversibility aspects are evaluated. As a case study the application of these strategies to a historical building in Istanbul is discussed.
Metrics
References
Amsterdam Charter, (1975). “The declaration of Amsterdam, Congress on the European Architectural Heritage”, Amsterdam.
Aras, F. (2013). “Istanbul’un kültürel mirası ve maruz kaldığı tehlikeler”, XVII. Oratçağ Türk Dönemi Kazıları ve Sanat Tarihi Araştırmaları Sempozyumu, İstanbul.
Aras, F., Krstevska, L., Altay, G. and Taskov, L. (2011). “Experimental and numerical modal analyses of a historical masonry palace”. Constr Build Mat. 25:81-91.
Aras, F. and Altay, G. (2015). “Seismic evaluation and structural control of the historical Beylerbeyi Palace”. Struct. Control Health Monit, 22(2): 347 – 364.
Beg, D., Skuber, p. and Pavlovcic, L. (2006). “Set-up of advanced Reversible Mixed Technologies for Seismic Protection”, Prohitech, WP6, Ljubljana.
-Calado, L., Proença J.M. and Panão, A. (2006). “Innovative materials and techniques for seismic protection”, Prohitech, WP5, Lisbon.
Erdik, M., Demircioglu, M., Sesetyan, K., Durukal, E., Siyahi, B. (2004). “Earthquake hazard in Marmara Region, Turkey”. Soil Dynamics and Earthquake Engineering 24:605-631.
FEMA-302. (1997). “NEHRP recommended provisions for seismic regulations for new buildings and other structures”, Building Seismic Safety Council, Washington.
Prohitech (2004). “Earthquake protection of historical structures by reversible mixed technologies”, FP6-2002-INCO-MPC-1.
SAP2000. 2006. “Structural Analysis Program”, Berkeley, California.
Stoian, V., Nagy-György, T., Dan, D. and Gergely, J. (2003). “Retrofitting the Shear Capacity of the Masonry Walls Using CFRP Composite Overlays”, International Conference in Earthquake Engineering, Skopje, Macedonia.
Yang, Y.B., Chang, K.C. and Yau J.D. (2002). “Earthquake Engineering Handbook”, Chapter 17: Base Isolation, CRC Press Boca Raton, Florida.
Downloads
Published
How to Cite
Issue
Section
License
COPYRIGHT POLICY
1. The International Journal of Architecture and Planning (ICONARP) open access articles are licensed under a Creative Commons Attribution-NonCommercial-NoDeriatives 4.0 International (CC BY-NC-ND 4.0). This license lets the author to share (copy and redistribute) his/her article in any medium or format.
2. ICONARP cannot revoke these freedoms as long as you follow the license terms. Under the following terms:
The author must give appropriate credit, provide a link to ICONARP, and indicate if changes were made on the article. The author may do so in any reasonable manner, but not in any way that suggests the ICONARP endorses the author or his/her use.
The author may not use the article for commercial purposes.
If the author remix, transform, or build upon the article, s/he may not distribute the modified material.
The author may share print or electronic copies of the Article with colleagues.
The author may use the Article within his/her employer’s institution or company for educational or research purposes, including use in course packs.
3. The author authorizes the International Journal of Architecture and Planning (ICONARP) to exclusively publish online his/her Article, and to post his/her biography at the end of the article, and to use the articles.
4. The author agrees to the International Journal of Architecture and Planning (ICONARP) using any images from the Article on the cover of the Journal, and in any marketing material.
5. As the author, copyright in the Article remains in his/her name.
6. All papers should be submitted electronically. All submitted manuscripts must be original work that is not under submission at another journal or under consideration for publication in another form, such as a monograph or chapter of a book. Authors of submitted papers are obligated not to submit their paper for publication elsewhere until an editorial decision is rendered on their submission. Further, authors of accepted papers are prohibited from publishing the results in other publications that appear before the paper is published in the Journal.