Integration of AI, Spatial Data, and GIS in Planning: Spatial Application Based on Machine Learning and Deep Learning

Authors

DOI:

https://doi.org/10.15320/ICONARP.2025.337

Keywords:

Big data, Deep learning, Geographical information systems, Machine learning, Spatial planning

Abstract

The study focuses on the integration of data, deep learning (DL) models, and machine learning (ML) algorithms with geographical information systems (GIS) within the field of spatial planning. An original contribution is provided by addressing the integration of DL and ML into GIS in terms of their advantages, limitations, encountered challenges, and potential directions for development within the context of spatial data and model validation processes. In this context, the objective is to identify the developmental trajectory, challenges, and potentials of spatial studies based on the integration of DL, ML, and GIS. To achieve this aim, 91 research articles published in high-impact journals indexed in the Web of Science (WoS) database were analyzed. The selected studies were evaluated under five main categories: spatial and temporal distribution, applications of DL and ML methods, thematic approaches, employed GIS tools, and data-model validation processes. The findings suggest that artificial intelligence technologies have the potential to serve as significant tools in spatial planning, although the current developmental stage remains in its early phases. While ML algorithms are widely applied across the reviewed studies, the application scope of DL models has expanded in recent years due to the increasing availability of large datasets. Spatial applications predominantly concentrate on land use, natural hazard assessments, environmental issues, and climate-related themes, particularly supported by the extensive use of remote sensing techniques. However, due to the limited accessibility of spatial data in rural areas, the majority of applied studies have been oriented toward urban centers, revealing a noticeable gap in research focusing on rural contexts. Furthermore, studies that implement AI and planning integration in practice demonstrate that the use of spatial data and the necessity of model validation constitute critical requirements. This study may offer guidance for future research by supporting the implementation of applications across diverse thematic domains involving the integration of artificial intelligence, planning, and GIS within spatially oriented processes.

References

Acharya, T., Gharekhan, D., & Samal, D. (2024). Harnessing ML and GIS for seismic vulnerability assessment and risk prioritization. Revue Internationale De Géomatique, 33(1), 111–134. https://doi.org/10.32604/rig.2024.051788

Achu, A., Thomas, J., Aju, C., Vijith, H., & Gopinath, G. (2024). Redefining landslide susceptibility under extreme rainfall events using deep learning. Geomorphology, 448, 109033. https://doi.org/10.1016/j.geomorph.2023.109033

Ahmadi, M., Lonbar, A. G., Nouri, M., Javidi, A. S., Beris, A. T., Sharifi, A., & Salimi-Tarazouj, A. (2024). Supervised multi-regional segmentation machine learning architecture for digital twin applications in coastal regions. Journal of Coastal Conservation, 28, 44. https://doi.org/10.1007/s11852-024-01038-1

Al-Azizi, J. I., Shafri, H. Z. M., Hashim, S. J. B., & Mansor, S. B. (2020). Deep auto mapping: low-cost and real-time geospatial map generation method using deep learning and video streams. Earth Science Informatics, 15(3), 1481–1494. https://doi.org/10.1007/s12145-020-00529-7

Al-Dousari, A. E., Mishra, A., & Singh, S. (2023). Land use land cover change detection and urban sprawl prediction for Kuwait metropolitan region, using multi-layer perceptron neural networks (MLPNN). The Egyptian Journal of Remote Sensing and Space Science, 26(2), 381-392. https://doi.org/10.1016/j.ejrs.2023.05.003

Ali, U., Shamsi, M. H., Bohacek, M., Purcell, K., Hoare, C., Mangina, E., & O’Donnell, J. (2020). A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making. Applied Energy, 279, 115834. https://doi.org/10.1016/j.apenergy.2020.115834

Aliyu, A., Isma’il, M., Zubairu, S. M., Gwio-Kura, I. Y., Abdullahi, A., Abubakar, B. A., & Mansur, M. (2023). Analysis of land use and land cover change using machine learning algorithm in Yola North Local Government Area of Adamawa State, Nigeria. Environmental Monitoring and Assessment, 195, 1470. https://doi.org/10.1007/s10661-023-12112-w

Alsumaiti, T., Yagoub, M. M., Tesfaldet, Y. T., Alhosani, N., & Pakam, S. (2024). Integration of building age into flood hazard mapping: A case study of Al Ain City, United Arab Emirates. Water, 16(17), 2408. https://doi.org/10.3390/w16172408

AlThuwaynee, O. F., Kim, S., Najemaden, M. A., Aydda, A., Balogun, A., Fayyadh, M. M., & Park, H. (2021). Demystifying uncertainty in PM10 susceptibility mapping using variable drop-off in extreme-gradient boosting (XGB) and random forest (RF) algorithms. Environmental Science and Pollution Research, 28(32), 43544–43566. https://doi.org/10.1007/s11356-021-13255-4

Amiri, S. S., Mueller, M., & Hoque, S. (2023). Investigating the application of a commercial and residential energy consumption prediction model for urban Planning scenarios with Machine Learning and Shapley Additive explanation methods. Energy and Buildings, 287, 112965. https://doi.org/10.1016/j.enbuild.2023.112965

Anwar, M. R., & Sakti, L. D. (2024). Integrating artificial intelligence and environmental science for sustainable urban planning. IAIC Transactions on Sustainable Digital Innovation (ITSDI), 5(2), 179–191. https://doi.org/10.34306/itsdi.v5i2.666

Aslam, R. W., Naz, I., Quddoos, A., & Quddusi, M. R. (2024). Assessing climatic impacts on land use and land cover dynamics in Peshawar, Khyber Pakhtunkhwa, Pakistan: A remote sensing and GIS approach. GeoJournal, 89, 202. https://doi.org/10.1007/s10708-024-11203-6

Avinç, G. M., & Yıldız, A. (2025). A bibliometric and systematic review of scientific publications on metaverse research in architecture: Web of science (WoS). International Journal of Technology and Design Education, 35, 825–849. https://doi.org/10.1007/s10798-024-09918-1

Badshah, M. T., Hussain, K., Rehman, A. U., Mehmood, K., Muhammad, B., Wiarta, R., Silamon, R. F., Khan, M. A., & Meng, J. (2024). The role of random forest and Markov chain models in understanding metropolitan urban growth trajectory. Frontiers in Forests and Global Change, 7, 1345047. https://doi.org/10.3389/ffgc.2024.1345047

Baghini, M. S., Mohammadi, M., & Norouzkhani, N. (2024). Usability testing: A bibliometric analysis based on WOS data. Journal of Scientometric Research, 13(1), 09–24. https://doi.org/10.5530/jscires.13.1.2

Ballesteros, J. R., Sanchez-Torres, G., & Branch-Bedoya, J. W. (2022). HAGDAVS: Height-augmented geo-located dataset for detection and semantic segmentation of vehicles in Drone aerial orthomosaics. Data, 7(4), 50. https://doi.org/10.3390/data7040050

Batty, M. (2018). Artificial intelligence and smart cities. Environment and Planning B Urban Analytics and City Science, 45(1), 3–6. https://doi.org/10.1177/2399808317751169

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Birkle, C., Pendlebury, D. A., Schnell, J., & Adams, J. (2020). Web of Science as a data source for research on scientific and scholarly activity. Quantitative Science Studies, 1(1), 363–376. https://doi.org/10.1162/qss_a_00018

Blanco, L., Alhamwi, A., Schiricke, B., & Hoffschmidt, B. (2024). Data-driven classification of urban energy units for district-level heating and electricity demand analysis. Sustainable Cities and Society, 101, 105075. https://doi.org/10.1016/j.scs.2023.105075

Boonpook, W., Tan, Y., & Xu, B. (2021). Deep learning-based multi-feature semantic segmentation in building extraction from images of UAV photogrammetry. International Journal of Remote Sensing, 42(1), 1–19. https://doi.org/10.1080/01431161.2020.1788742

Bortoloti, F. D., Tavares, J., Rauber, T. W., Ciarelli, P. M., & Botelho, R. C. G. (2022). An annotated image database of building facades categorized into land uses for object detection using deep learning. Machine Vision and Applications, 33, 80. https://doi.org/10.1007/s00138-022-01335-5

Casali, Y., Aydin, N. Y., & Comes, T. (2022). Machine learning for spatial analyses in urban areas: A scoping review. Sustainable Cities and Society, 85, 104050. https://doi.org/10.1016/j.scs.2022.104050

Celik, K.T. & Sekeroglu, A. (2023). The importance of geographical information systems in urban and landscape planning: A bibliometric analysis. MEGARON / Yıldız Technical University Faculty of Architecture E-Journal, 18(4), 499–519. https://doi.org/10.14744/megaron.2023.70962

Chanpichaigosol, N., Chaichana, C., & Rinchumphu, D. (2025). Urban heat island classification through alternative normalized difference vegetation index. Global Journal of Environmental Science and Management, 11(1), 57–76. https://doi.org/10.22034/gjesm.2025.01.04

Chaturvedi, V., & De Vries, W. T. (2021). Machine learning algorithms for urban land use planning: A review. Urban Science, 5(3), 68. https://doi.org/10.3390/urbansci5030068

Chen, W., & Zhang, S. (2021). GIS-based comparative study of Bayes network, Hoeffding tree and logistic model tree for landslide susceptibility modeling. CATENA, 203, 105344. https://doi.org/10.1016/j.catena.2021.105344

Chen, W., Jing, C., Liquan, X., & Haiyun, X. (2022). Spatial potential of recreational services in Western Hubei Region in light of the "all-for-one tourism" development -A machine learning approach based on ensemble model. Landscape Architecture Frontiers, 10(5), 8. https://doi.org/10.15302/j-laf-1-020073

Chen, X., Tu, W., Yu, J., Cao, R., Yi, S., & Li, Q. (2024). LCZ-based city-wide solar radiation potential analysis by coupling physical modeling, machine learning, and 3D buildings. Computers Environment and Urban Systems, 113, 102176. https://doi.org/10.1016/j.compenvurbsys.2024.102176

Darabi, H., Choubin, B., Rahmati, O., Haghighi, A. T., Pradhan, B., & Kløve, B. (2019). Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. Journal of Hydrology, 569, 142–154. https://doi.org/10.1016/j.jhydrol.2018.12.002

Darabi, H., Rahmati, O., Naghibi, S. A., Mohammadi, F., Ahmadisharaf, E., Kalantari, Z., Haghighi, A. T., Soleimanpour, S. M., Tiefenbacher, J. P., & Bui, D. T. (2022). Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood. Geocarto International, 37(19), 5716–5741. https://doi.org/10.1080/10106049.2021.1920629

Deb, D., & Smith, R. M. (2021). Application of Random Forest and SHAP Tree Explainer in Exploring Spatial (In)Justice to aid Urban Planning. ISPRS International Journal of Geo-Information, 10(9), 629. https://doi.org/10.3390/ijgi10090629

Di Napoli, M., Di Martire, D., Bausilio, G., Calcaterra, D., Confuorto, P., Firpo, M., Pepe, G., & Cevasco, A. (2021). Rainfall-Induced shallow landslide detachment, transit and runout susceptibility mapping by integrating machine learning techniques and GIS-Based approaches. Water, 13(4), 488. https://doi.org/10.3390/w13040488

Dogan, S., Kilicoglu, C., Akinci, H., Sevik, H., Cetin, M., & Kocan, N. (2024). Comprehensive risk assessment for identifying suitable residential zones in Manavgat, Mediterranean Region. Evaluation and Program Planning, 106, 102465. https://doi.org/10.1016/j.evalprogplan.2024.102465

Fang, X., & Zhang, Z. (2024). Hotspots and trends in health-oriented physical literacy research: a visual analysis based on the WOS database. BMC Public Health, 24(1). https://doi.org/10.1186/s12889-024-18951-7

Fang, Y., Tian, J., Namaiti, A., Zhang, S., Zeng, J., & Zhu, X. (2024). Visual aesthetic quality assessment of the streetscape from the perspective of landscape-perception coupling. Environmental Impact Assessment Review, 106, 107535. https://doi.org/10.1016/j.eiar.2024.107535

Fang, Z., Jin, Y., & Yang, T. (2022). Incorporating Planning Intelligence into Deep Learning: A Planning Support Tool for Street Network Design. Journal of Urban Technology, 29(2), 99–114. https://doi.org/10.1080/10630732.2021.2001713

Fanos, A. M., Pradhan, B., Alamri, A., & Lee, C. (2020). Machine Learning-Based and 3D kinematic models for rockfall hazard assessment using LiDAR data and GIS. Remote Sensing, 12(11), 1755. https://doi.org/10.3390/rs12111755

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010

Ferreira, Z., Almeida, B., Costa, A. C., Fernandes, M. D. C., & Cabral, P. (2025). Insights into landslide susceptibility: a comparative evaluation of multi-criteria analysis and machine learning techniques. Geomatics Natural Hazards and Risk, 16(1). https://doi.org/10.1080/19475705.2025.2471019

Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. https://doi.org/10.1016/s0034-4257(01)00295-4

Frimpong, A. T., Mensah, L. D., Rockson, M. A. D., & Kemausuor, F. (2025). Forecasting municipal solid waste generation and composition using machine learning and GIS techniques: A case study of Cape Coast, Ghana. Cleaner Waste Systems, 10, 100218. https://doi.org/10.1016/j.clwas.2025.100218

Gharaibeh, A., Shaamala, A., Obeidat, R., & Al-Kofahi, S. (2020). Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon, 6(9), e05092. https://doi.org/10.1016/j.heliyon.2020.e05092

Gómez, J. A., Guan, C., Tripathy, P., Duque, J. C., Passos, S., Keith, M., & Liu, J. (2021). Analyzing the spatiotemporal uncertainty in urbanization predictions. Remote Sensing, 13(3), 512. https://doi.org/10.3390/rs13030512

Goodchild, M. F. (2009). Geographic information systems and science: Today and tomorrow. Annals of GIS, 15(1), 3–9. https://doi.org/10.1080/19475680903250715

Goodchild, M. F., & Janelle, D. G. (2004). Thinking spatially in the social sciences. In M. F. Goodchild & D. G. Janelle (Eds.), Spatially integrated social science (pp. 3–17). United States: Oxford University Press

Haery, S., Mahpour, A., & Vafaeinejad, A. (2024). Forecasting urban travel demand with geo-AI: A combination of GIS and machine learning techniques utilizing uber data in New York City. Environmental Earth Sciences, 83, 594. https://doi.org/10.1007/s12665-024-11900-y

Hagenauer, J., Omrani, H., & Helbich, M. (2019). Assessing the performance of 38 machine learning models: The case of land consumption rates in Bavaria, Germany. International Journal of Geographical Information Science, 33(7), 1399–1419. https://doi.org/10.1080/13658816.2019.1579333

Hamid, B., Massinissa, B., & Nabila, G. (2023). Landslide susceptibility mapping using GIS-based statistical and machine learning modeling in the city of Sidi Abdellah, Northern Algeria. Modeling Earth Systems and Environment, 9(2), 2477–2500. https://doi.org/10.1007/s40808-022-01633-x

Harrington, P. (2012). Machine learning in action. United States: Manning Publications.

He, J., Li, X., Yao, Y., Hong, Y., & Jinbao, Z. (2018). Mining transition rules of cellular automata for simulating urban expansion by using the deep learning techniques. International Journal of Geographical Information Science, 32(10), 2076–2097. https://doi.org/10.1080/13658816.2018.1480783

Huang, J., Bibri, S. E., & Keel, P. (2025). Generative Spatial Artificial Intelligence for Sustainable Smart Cities: A pioneering large flow model for urban digital twin. Environmental Science and Ecotechnology, 24, 100526. https://doi.org/10.1016/j.ese.2025.100526

Huettmann, F., Kövér, L., Robold, R., Spangler, M., & Steiner, M. (2023). Model-based prediction of a vacant summer niche in a subarctic urbanscape: A multi-year open access data analysis of a ‘niche swap’ by short-billed Gulls. Ecological Informatics, 78, 102364. https://doi.org/10.1016/j.ecoinf.2023.102364

Hussain, K., Badshah, T., Mehmood, K., Rahman, A. U., Shahzad, F., Anees, S. A., Khan, W. R., & Yujun, S. (2025). Comparative analysis of sensors and classification algorithms for land cover classification in Islamabad, Pakistan. Earth Science Informatics, 18(2). https://doi.org/10.1007/s12145-025-01720-4

Iamtrakul, P., Chayphong, S., Kantavat, P., Hayashi, Y., Kijsirikul, B., & Iwahori, Y. (2023). Exploring the spatial effects of built environment on quality of life related transportation by integrating GIS and deep learning approaches. Sustainability, 15(3), 2785. https://doi.org/10.3390/su15032785

Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First Experience with Sentinel-2 Data for Crop and tree species classifications in Central Europe. Remote Sensing, 8(3), 166. https://doi.org/10.3390/rs8030166

Janowicz, K., Gao, S., McKenzie, G., Hu, Y., & Bhaduri, B. (2020). GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), 625–636. https://doi.org/10.1080/13658816.2019.1684500

Jato-Espino, D., Manchado, C., Roldán-Valcarce, A., & Moscardó, V. (2022). ArcUHI: A GIS add-in for automated modelling of the Urban Heat Island effect through machine learning. Urban Climate, 44, 101203. https://doi.org/10.1016/j.uclim.2022.101203

Jing, Y., Cui, J., Ma, D., & Chen, Y. (2023). Editorial: Towards sustainable urban development: Use of geographic big data for spatial planning. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1202661

Junjia, Y., Alias, A. H., Haron, N. A., & Bakar, N. A. (2023). A bibliometric review on Safety Risk assessment of construction based on CiteSpace software and WOS database. Sustainability, 15(15), 11803. https://doi.org/10.3390/su151511803

Kamrowska-Załuska, D. (2021). Impact of AI-Based tools and urban big data analytics on the design and planning of cities. Land, 10(11), 1209. https://doi.org/10.3390/land10111209

Kar, R., & Wasnik, A. (2024). Progress and trends in healthcare marketing strategy (2018–2022): A descriptive and bibliometric analysis of the Web of Science (WOS) dataset. International Journal of Pharmaceutical and Healthcare Marketing, 18(2), 325–349. https://doi.org/10.1108/ijphm-12-2022-0106

Karlı, M., & Terzi, F. (2025). Modelling the energy footprint of urban form in Istanbul: A big data and machine learning approach. Energy and Buildings, 115495. https://doi.org/10.1016/j.enbuild.2025.115495

Klosterman, R. E. (1995). The appropriateness of geographic information systems for regional planning in the developing world. Computers Environment and Urban Systems, 19(1), 1–13. https://doi.org/10.1016/0198-9715(94)00028-x

Leitch, S., & Wei, Z. (2024). Improving spatial access to healthcare facilities: an integrated approach with spatial analysis and optimization modeling. Annals of Operations Research, 341(2–3), 1057–1074. https://doi.org/10.1007/s10479-024-06028-y

Lemenkova, P. (2024). Artificial intelligence for computational remote sensing: Quantifying patterns of land cover types around Cheetham wetlands, port Phillip Bay, Australia. Journal of Marine Science and Engineering, 12(8), 1279. https://doi.org/10.3390/jmse12081279

Li, Q., Taubenböck, H., Shi, Y., Auer, S., Roschlaub, R., Glock, C., Kruspe, A., & Zhu, X. X. (2022). Identification of undocumented buildings in cadastral data using remote sensing: Construction period, morphology, and landscape. International Journal of Applied Earth Observation and Geoinformation, 112, 102909. https://doi.org/10.1016/j.jag.2022.102909

Li, T., Xu, H., & Sun, H. (2023a). Spatial patterns and multi-dimensional impact analysis of urban street quality perception under multi-source data: A case study of Wuchang district in Wuhan, China. Applied Sciences, 13(21), 11740. https://doi.org/10.3390/app132111740

Li, W. (2020). GeoAI: Where machine learning and big data converge in GIScience. Journal of Spatial Information Science, 20(20), 71–77. https://doi.org/10.5311/JOSIS.2020.20.658

Li, X., Zhang, X., & Jia, T. (2023b). Humanization of nature: Testing the influences of urban park characteristics and psychological factors on collegers’ perceived restoration. Urban Forestry & Urban Greening, 79, 127806. https://doi.org/10.1016/j.ufug.2022.127806

Lin, L., Di, L., Zhang, C., Guo, L., Zhao, H., Islam, D., Li, H., Liu, Z., & Middleton, G. (2024). Modeling urban redevelopment: A novel approach using time-series remote sensing data and machine learning. Geography and Sustainability, 5(2), 211–219. https://doi.org/10.1016/j.geosus.2024.02.001

Liu, C., Lin, T., Yuan, K., & Chiueh, P. (2022). Spatio-temporal prediction and factor identification of urban air quality using support vector machine. Urban Climate, 41, 101055. https://doi.org/10.1016/j.uclim.2021.101055

Liu, L., Xu, Z., Yao, S., Lv, M., & Liu, C. (2024). Optimizing the spatial accessibility of outdoor sports facilities: a greedy heuristic algorithm based on remote sensing images. International Journal of Digital Earth, 17(1). https://doi.org/10.1080/17538947.2024.2390427

Liu, M., Chen, H., Wei, D., Wu, Y., & Li, C. (2021). Nonlinear relationship between urban form and street-level PM2.5 and CO based on mobile measurements and gradient boosting decision tree models. Building and Environment, 205, 108265. https://doi.org/10.1016/j.buildenv.2021.108265

Liu, R., Wang, Y., Zhang, Y., Peng, Z., Chen, H., Li, X., Li, H., & Li, W. (2025). Analysis of the city-scale wind environment and detection of ventilation corridors in high-density metropolitan areas based on CFD method. Urban Climate, 59, 102274. https://doi.org/10.1016/j.uclim.2024.102274

Liu, R., Xu, Y., Xue, C., Xia, Z., Li, G., Gou, X., & Luo, S. (2023). Simulation of early warning ındicators of urban expansion derived from machine learning. Journal of Urban Planning and Development, 149(1). https://doi.org/10.1061/jupddm.upeng-4127

Liu, Z., & Cheng, L. (2020). Review of GIS technology and its applications in different areas. IOP Conference Series Materials Science and Engineering, 735(1), 012066. https://doi.org/10.1088/1757-899x/735/1/012066

Lloyd, C., Sturrock, H., Leasure, D., Jochem, W., Lázár, A., & Tatem, A. (2020). Using GIS and machine learning to classify residential status of urban buildings in low and middle income settings. Remote Sensing, 12(23), 3847. https://doi.org/10.3390/rs12233847

Mahendra, H., Pushpalatha, V., Mallikarjunaswamy, S., Subramoniam, S. R., Rao, A. S., & Sharmila, N. (2024). LULC change detection analysis of Chamarajanagar district, Karnataka state, India using CNN-based deep learning method. Advances in Space Research, 75(12), 6384-6408. https://doi.org/10.1016/j.asr.2024.07.066

Manna, H., Mallick, S. K., Sarkar, S., & Roy, S. K. (2025). Developing decision making framework on built-up site suitability assessment for urban regeneration in the industrial cities of Eastern India. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-90408-2

Mansourihanis, O., Tilaki, M. J. M., Yousefian, S., & Zaroujtaghi, A. (2023). A computational geospatial approach to assessing land-use compatibility in urban planning. Land, 12(11), 2083. https://doi.org/10.3390/land12112083

Mazroa, A. A., Maashi, M., Kouki, F., Othman, K. M., Salih, N., Elfaki, M. A., & S, S. B. (2024). An analysis of urban sprawl growth and prediction using remote sensing and machine learning techniques. Journal of South American Earth Sciences, 142, 104988. https://doi.org/10.1016/j.jsames.2024.104988

McCorduck, P. (2004). Machines who think: A personal inquiry into the history and prospects of artificial intelligence (2nd ed.). Canada: AK Peters.

Mishra, K., Tiwari, H., & Poonia, V. (2025). An integrated approach of machine learning methods coupled with cellular automation for monitoring and forecasting of land use and land cover. Journal of Arid Environments, 226, 105293. https://doi.org/10.1016/j.jaridenv.2024.105293

Mishra, S., Bajpai, A., Mohanta, A., Banerjee, B., Rajput, S., & Kundu, S. (2024). Dynamic flood risk prediction in Houston: A multi-model machine learning approach. Geocarto International, 39(1). https://doi.org/10.1080/10106049.2024.2432866

Mitchell, T. M. (1997). Machine Learning. New York: McGraw-Hill.

Mondal, S., Parveen, M. T., Alam, A., Rukhsana, N., Islam, N., Calka, B., Bashir, B., & Zhran, M. (2024). Future site suitability for urban waste management in English Bazar and Old Malda municipalities, West Bengal: a geospatial and machine learning approach. ISPRS International Journal of Geo-Information, 13(11), 388. https://doi.org/10.3390/ijgi13110388

Mustak, S., Baghmar, N. K., Singh, S. K., & Srivastava, P. K. (2022). Multi-scenario based urban growth modeling and prediction using earth observation datasets towards urban policy improvement. Geocarto International, 37(27), 18275–18303. https://doi.org/10.1080/10106049.2022.2138983

Mutani, G., Scalise, A., Sufa, X., & Grasso, S. (2024). Synergising machine learning and remote sensing for Urban heat island dynamics: A Comprehensive Modelling approach. Atmosphere, 15(12), 1435. https://doi.org/10.3390/atmos15121435

Nahid, S., Kumar, R. P., Acharya, P., Kumar, K., & Purohit, S. (2025). Forecasting urban expansion in Delhi-NCR: integrating remote sensing, machine learning, and Markov chain simulation for sustainable urban planning. GeoJournal, 90, 72. https://doi.org/10.1007/s10708-025-11317-5

Ni, H., Wang, D., Zhao, W., Jiang, W., Mingze, E., Huang, C., & Yao, J. (2024). Enhancing rooftop solar energy potential evaluation in high-density cities: A Deep Learning and GIS based approach. Energy and Buildings, 309, 113743. https://doi.org/10.1016/j.enbuild.2023.113743

Nizamani, M. M., Qureshi, S., Tarashkar, M., Zhang, H., Zhou, Q., & Lai, Z. (2025). Ethical AI: Human-centered approaches for adaptive and sustainable urban planning and policy. Land Use Policy, 157, 107650. https://doi.org/10.1016/j.landusepol.2025.107650

Ohlan, R., Ohlan, A., Chhikara, S., & Singh, T. (2025). Bibliometric analysis and review of world trade organization research: Suggesting future avenues using WOS database. Journal of the Knowledge Economy, 16, 3741–3771 https://doi.org/10.1007/s13132-024-02134-1

Omrani, H., Tayyebi, A., & Pijanowski, B. (2017). Integrating the multi-label land-use concept and cellular automata with the artificial neural network-based Land Transformation Model: an integrated ML-CA-LTM modeling framework. GIScience & Remote Sensing, 54(3), 283–304. https://doi.org/10.1080/15481603.2016.1265706

Park, J., & Yang, B. (2020). GIS-Enabled Digital Twin system for sustainable evaluation of carbon emissions: A case study of Jeonju City, South Korea. Sustainability, 12(21), 9186. https://doi.org/10.3390/su12219186

Patil, V., Khadke, Y., Joshi, A., & Sawant, S. (2024). Flood mapping and damage assessment using ensemble model approach. Sensing and Imaging, 25, 15. https://doi.org/10.1007/s11220-024-00464-7

Peng, Z., Lu, K., Liu, Y., & Zhai, W. (2023). The pathway of urban planning AI: From planning support to plan-making. Journal of Planning Education and Research, 44(4), 2263–2279. https://doi.org/10.1177/0739456x231180568

Pflugmacher, D., Rabe, A., Peters, M., & Hostert, P. (2019). Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sensing of Environment, 221, 583–595. https://doi.org/10.1016/j.rse.2018.12.001

Pushpalatha, V., Mallikarjuna, P. B., Mahendra, H. N., Rama Subramoniam, S., & Mallikarjunaswamy, S. (2025). Land use and land cover classification for change detection studies using convolutional neural network. Advances in Computational and Applied Geosciences, 5(2), 100227. https://doi.org/10.1016/j.acags.2025.100227

Quan, S. J. (2024). Comparing hyperparameter tuning methods in machine learning based urban building energy modeling: A study in Chicago. Energy and Buildings, 317, 114353. https://doi.org/10.1016/j.enbuild.2024.114353

Riaz, M. T., Riaz, M. T., Rehman, A., Bindajam, A. A., Mallick, J., & Abdo, H. G. (2024). An integrated approach of support vector machine (SVM) and weight of evidence (WOE) techniques to map groundwater potential and assess water quality. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-76607-3

Rizeei, H. M., Pradhan, B., & Saharkhiz, M. A. (2019). Allocation of emergency response centres in response to pluvial flooding-prone demand points using integrated multiple layer perceptron and maximum coverage location problem models. International Journal of Disaster Risk Reduction, 38, 101205. https://doi.org/10.1016/j.ijdrr.2019.101205

Salele, B., Dodo, Y. A., Sani, D. A., Abuhussain, M. A., Abdullaeva, B. S., & Brysiewicz, A. (2023). Run-off modelling of pervious and impervious areas using couple SWAT and a novel machine learning model in cross-rivers state Nigeria. Water Science & Technology, 88(7), 1893–1909. https://doi.org/10.2166/wst.2023.304

Sampurno, J., Ardianto, R., & Hanert, E. (2022). Integrated machine learning and GIS-based bathtub models to assess the future flood risk in the Kapuas River Delta, Indonesia. Journal of Hydroinformatics, 25(1), 113–125. https://doi.org/10.2166/hydro.2022.106

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210–229. https://doi.org/10.1147/rd.33.0210

Sanchez, T. W., Shumway, H., Gordner, T., & Lim, T. (2023). The prospects of artificial intelligence in urban planning. International Journal of Urban Sciences, 27(2), 179–194. https://doi.org/10.1080/12265934.2022.2102538

Santos, B., Gonçalves, J., Martins, A. M., Pérez-Cano, M. T., Mosquera-Adell, E., Dimelli, D., Lagarias, A., & Almeida, P. G. (2021). GIS in architectural teaching and research: Planning and heritage. Education Sciences, 11(6), 307. https://doi.org/10.3390/educsci11060307

Scholten, H. J., & Stillwell, J. (2013). Geographical information systems for urban and regional planning. Germany: Springer Science & Business Media.

Schrammeijer, E. A., Malek, Ž., & Verburg, P. H. (2022). Mapping demand and supply of functional niches of urban green space. Ecological Indicators, 140, 109031. https://doi.org/10.1016/j.ecolind.2022.109031

Segura-Méndez, F. J., Pérez-Sánchez, J., & Senent-Aparicio, J. (2023). Evaluating the riparian forest quality index (QBR) in the Luchena River by integrating remote sensing, machine learning and GIS techniques. Ecohydrology & Hydrobiology, 23(3), 469–483. https://doi.org/10.1016/j.ecohyd.2023.04.002

Seydou, K. D., Morenikeji, W., Diouf, A., Dicko, K., Erdanaev, E., Loewner, R., & Okhimamhe, A. A. (2024). Dynamics of Zinder’s urban landscape: Implications for sustainable land use management and environmental conservation. Sustainability, 16(23), 10263. https://doi.org/10.3390/su162310263

Shao, Y., Yin, Y., Xue, Z., & Ma, D. (2023). Assessing and comparing the visual comfort of streets across four Chinese megacities using ai-based image analysis and the perceptive evaluation method. Land, 12(4), 834. https://doi.org/10.3390/land12040834

Sierra, S., Ramo, R., Padilla, M., & Cobo, A. (2025). Optimizing deep neural networks for high-resolution land cover classification through data augmentation. Environmental Monitoring and Assessment, 197, 423. https://doi.org/10.1007/s10661-025-13870-5

Sinčić, M., Gazibara, S. B., Rossi, M., & Arbanas, S. M. (2025). Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models. Natural Hazards and Earth System Sciences, 25(1), 183–206. https://doi.org/10.5194/nhess-25-183-2025

Smith, T. R. (1984). Artificial intelligence and its applicability to geographical problem solving. The Professional Geographer, 36(2), 147–158. https://doi.org/10.1111/j.0033-0124.1984.00147.x

Sobieraj, J., Marín, M. F., & Metelski, D. (2023). Mapping of impervious surfaces with the use of remote sensing imagery: Support Vector Machines classification and GIS-based approach. Archives of Civil Engineering, 69(3), 129-146. https://doi.org/10.24425/ace.2023.146071

Srivanit, M., Pattanasri, S., Phichetkunbodee, N., Manokeaw, S., Sitthikankun, S., & Rinchumphu, D. (2024). Analysis of sensitive urban form indicators of flood susceptible prediction based on machine learning models. Global Journal of Environmental Science and Management, 10(1), 15–28. https://doi.org/10.22034/gjesm.2024.01.02

Su, L., Chen, W., Zhou, Y., & Fan, L. (2023). Exploring city ımage perception in social media big data through deep learning: A Case Study of Zhongshan City. Sustainability, 15(4), 3311. https://doi.org/10.3390/su15043311

Sun, C., Zhang, F., Zhao, P., Zhao, X., Huang, Y., & Lu, X. (2021). Automated simulation framework for urban wind environments based on aerial point clouds and deep learning. Remote Sensing, 13(12), 2383. https://doi.org/10.3390/rs13122383

Tang, Y., Feng, F., Guo, Z., Feng, W., Li, Z., Wang, J., Sun, Q., Ma, H., & Li, Y. (2020). Integrating principal component analysis with statistically-based models for analysis of causal factors and landslide susceptibility mapping: A comparative study from the loess plateau area in Shanxi (China). Journal of Cleaner Production, 277, 124159. https://doi.org/10.1016/j.jclepro.2020.124159

Tokarčík, O., Blišťan, P., Kovanič, Ľ., Peťovský, P., & Topitzer, B. (2024). Assessment of the usability of open data in Slovakia in the context of mapping and evaluating Blue-Green Infrastructure. Geographia Cassoviensis, 18(2). https://doi.org/10.33542/gc2024-2-02

Trinh, L. H., Pham, V. T., Tran, X. B., Nguyen, V. T., Vu, X. C., Tong, T. H., & Le, V. P. (2024). Mapping impervious surface change from remote sensing and GIS data: A case study in Hochiminh city, Vietnam. Ecological Questions, 35(3), 1–14. https://doi.org/10.12775/eq.2024.030

Venter, Z. S., & Sydenham, M. A. K. (2021). Continental-scale land cover mapping at 10 m resolution over Europe (ELC10). Remote Sensing, 13(12), 2301. https://doi.org/10.3390/rs13122301

Wan, T., & Ma, Y. (2022). Urban planning and design layout generation based on artificial intelligence. Mathematical Problems in Engineering, 2022, 1–10. https://doi.org/10.1155/2022/8976943

Wang, J., & Liu, Z. (2014). A bibliometric analysis on rural studies in human geography and related disciplines. Scientometrics, 101(1), 39–59. https://doi.org/10.1007/s11192-014-1388-2

Wang, L., Pijanowski, B., Yang, W., Zhai, R., Omrani, H., & Li, K. (2018). Predicting multiple land use transitions under rapid urbanization and implications for land management and urban planning: The case of Zhanggong district in central China. Habitat International, 82, 48–61. https://doi.org/10.1016/j.habitatint.2018.08.007

Wang, S., Ou, H., Chen, P., & Lin, T. (2024). Implementing policies to mitigate urban heat islands: Analyzing urban development factors with an innovative machine learning approach. Urban Climate, 55, 101868. https://doi.org/10.1016/j.uclim.2024.101868

Wang, Z., Zhu, Z., Xu, M., & Qureshi, S. (2021). Fine-grained assessment of greenspace satisfaction at regional scale using content analysis of social media and machine learning. The Science of the Total Environment, 776, 145908. https://doi.org/10.1016/j.scitotenv.2021.145908

Wu, C., Wang, Y., Wang, J., Kraak, M., & Wang, M. (2024). Mapping Street Patterns with Network Science and Supervised Machine Learning. ISPRS International Journal of Geo-Information, 13(4), 114. https://doi.org/10.3390/ijgi13040114

Xiao, T., Yin, K., Yao, T., & Liu, S. (2019). Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China. Acta Geochimica, 38(5), 654–669. https://doi.org/10.1007/s11631-019-00341-1

Xu, Y., Chen, R., Du, H., Chen, M., Fu, C., & Li, Y. (2025). Evaluation of green space influence on housing prices using machine learning and urban visual intelligence. Cities, 158, 105661. https://doi.org/10.1016/j.cities.2024.105661

Yagoub, M. M., Tesfaldet, Y. T., Elmubarak, M. G., & Hosani, N. A. (2022). Extraction of urban quality of life indicators using remote sensing and machine learning: the case of Al Ain City, United Arab Emirates (UAE). ISPRS International Journal of Geo-Information, 11(9), 458. https://doi.org/10.3390/ijgi11090458

Yan, L., & Zhiping, W. (2023). Mapping the literature on academic publishing: A bibliometric analysis on WOS. SAGE Open, 13(1). https://doi.org/10.1177/21582440231158562

Yao, Y., Li, X., Liu, X., Liu, P., Liang, Z., Zhang, J., & Mai, K. (2017). Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model. International Journal of Geographical Information Science, 31(4), 825–848. https://doi.org/10.1080/13658816.2016.1244608

Yao, Y., Yin, H., Xu, C., Chen, D., Shao, L., Guan, Q., & Wang, R. (2022). Assessing myocardial infarction severity from the urban environment perspective in Wuhan, China. Journal of Environmental Management, 317, 115438. https://doi.org/10.1016/j.jenvman.2022.115438

Ye, N., Wang, B., Kita, M., Xie, M., & Cai, W. (2019). Urban commerce distribution analysis based on street view and deep learning. IEEE Access, 7, 162841–162849. https://doi.org/10.1109/ACCESS.2019.2951294

Yu, J., Zeng, P., Yu, Y., Yu, H., Huang, L., & Zhou, D. (2022). A Combined Convolutional Neural Network for Urban Land-Use Classification with GIS Data. Remote Sensing, 14(5), 1128. https://doi.org/10.3390/rs14051128

Zafar, Z., Zubair, M., Zha, Y., Fahd, S., & Nadeem, A. A. (2024). Performance assessment of machine learning algorithms for mapping of land use/land cover using remote sensing data. The Egyptian Journal of Remote Sensing and Space Science, 27(2), 216–226. https://doi.org/10.1016/j.ejrs.2024.03.003

Zappone, A., Di Renzo, M., & Debbah, M. (2019). Wireless networks design in the era of deep learning: Model-Based, AI-Based, or both?. IEEE Transactions on Communications, 67(10), 7331–7376. https://doi.org/10.1109/tcomm.2019.2924010

Zheng, Y., Wang, Y., Wang, X., Wen, Y., & Guo, S. (2024). Managing landscape urbanization and assessing biodiversity of wildlife habitats: A study of bobcats in San Jose, California. Land, 13(2), 152. https://doi.org/10.3390/land13020152

Zhu, X. X., Tuia, D., Mou, L., Xia, G., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep Learning in Remote Sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8–36. https://doi.org/10.1109/mgrs.2017.2762307

Zhu, Y., Mao, Y., Yuan, M., Zhang, K., & Lv, C. (2023). Global research productions pertaining to design for safety: A bibliometric analysis based on WOS database. Buildings, 13(6), 1515. https://doi.org/10.3390/buildings13061515

Zou, L., Song, Y., & Cervone, G. (2024). Geospatial big data: Theory, methods, and applications. Annals of GIS, 30(4), 411–415. https://doi.org/10.1080/19475683.2024.2419749

Published

31-12-2025

How to Cite

Sekeroglu, A., & Celik, K. T. (2025). Integration of AI, Spatial Data, and GIS in Planning: Spatial Application Based on Machine Learning and Deep Learning. ICONARP International Journal of Architecture and Planning, 13(2), 592 – 624. https://doi.org/10.15320/ICONARP.2025.337

Issue

Section

Articles