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Abstract 
This study focuses on analogical reasoning and deep learning models to enhance 

the innovative design process in architecture. By constructing multi-layered 

artificial neural networks, deep learning can derive analogical predictions from 

structured data to solve complex tasks. Deep learning models interact with 

analogical thinking patterns in the architectural design process, enabling designers 

to analyze and draw inspiration from analogical design examples. This study aims 

to develop a deep learning model that categorizes architectural design examples 

into specific analogical design classifications. For this purpose, a model based on 

Convolutional Neural Networks was developed and coded in the Google Colab 

environment using a dataset of 29,596 visual images, employing Peter Collins' 

classification system of biological, mechanical, gastronomic, and linguistic 

analogies. During the training process, the model was trained on images classified 

according to biological, mechanical, gastronomic, and linguistic categories, 

achieving an accuracy rate of 98%; however, this rate was recorded as 86% during 

the testing phase. It was observed that adjustments in the learning rate parameter 

balanced classification accuracy and training time; lower learning rates reduced 

accuracy while extending training time. Despite the complexity of architectural 

images indicated by the 86% accuracy rate on test data, the study emphasizes the 

model's capacity to achieve accuracy above 95% when confronted with distinct 

architectural features. In this case, the model allows designers to discover which 

analogical classification the architectural work to be tested is designed according 

to, allowing them to develop creative solutions to new design problems. 

Additionally, this research establishes an interdisciplinary dialogue between 

artificial intelligence and architecture, providing a foundation for future studies. 
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INTRODUCTION 

Deep learning represents a sophisticated methodology within 

machine learning, designed by constructing artificial neural networks 

with multiple processing layers to tackle complex tasks (Wong, 2021). 

This innovative approach focuses on leveraging the capabilities of deep 

neural networks, which can derive insights directly from structured 

data. The remarkable ability of these neural networks to replicate the 

complex connections between input data and the resulting output 

predictions is noteworthy. Deep neural networks often integrate 

architectural elements of convolutional, recurrent, and multilayer 

perceptrons in their design, drawing inspiration from the inner 

workings of the human brain (Chinnasamy et al., 2015). Pioneering 

research is being conducted in this field, exploring new models within 

this comprehensive framework (Jayakanna & Raju, 2022). The domain 

of deep learning algorithms is characterized by a continuous evolution 

involving the iterative fine-tuning of weights and biases connected to 

individual neurons. This gradual improvement process results in a step-

by-step enhancement of cognitive abilities, enabling them to adeptly 

address previously considered complex and insurmountable challenges. 

Despite significant challenges related to the demand for extensive data 

and substantial computational resources, the profound potential of deep 

learning methodologies significantly enhances their flexibility and 

importance across various fields. These fields encompass recognition 

and image processing sectors, where deep learning techniques have 

delivered transformative results. 

One of the primary advantages of using deep learning in architectural 

design is its ability to augment human creativity. As Petráková notes, a 

well-calibrated artificial intelligence can inspire architects without 

overshadowing their creative instincts, thus preserving the human 

touch in design processes (Petráková, 2023). This view is shared by 

Atwa and Saleh, who emphasize the necessity of understanding how 

artificial intelligence can impact creativity. It is suggested that architects 

increasingly leverage the capabilities of artificial intelligence to meet 

specific design demands (Atwa & Saleh, 2023). Furthermore, Rane 

states that including generative artificial intelligence in architectural 

theory represents a paradigm shift, expressing that machine intelligence 

is blended with human creativity, redefining the essence of creativity in 

design (Rane, 2023). 

The evolution of artificial intelligence in architectural design has also 

brought about various algorithmic approaches that facilitate the 

exploration of abstract concepts and the generation of numerous design 

ideas. Hegazy and Saleh discuss how artificial intelligence has 

revolutionized the construction industry by providing tools capable of 

parametric explorations and generating design variations based on 

mathematically defined parameters (Hegazy & Saleh, 2023). This 

capability is also supported by Li and others, demonstrating how deep 

learning models contribute to the intelligent design of architectural 
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spaces and enhance design processes suitable for three-dimensional 

features (Li, Wu, Xing, & Wang, 2023). 

Moreover, the ethical dimensions of artificial intelligence in 

architecture must be considered. Tellios emphasizes that integrating 

artificial intelligence into architectural applications raises questions 

about biases in these technologies and that its impact on design 

innovation and production processes should be subject to critical 

scrutiny (Tellios, 2023). This concern is echoed in the work of Winiarti 

and others, who state that artificial intelligence should be used 

responsibly in digital architecture, addressing potential challenges while 

enhancing design capabilities (Winiarti, Pramono, & Pranolo, 2022). 

Regarding practical applications, recent developments in generative 

design with artificial intelligence have enabled architects to create high-

quality architectural designs from textual descriptions. Chen's research 

reveals an innovative artificial intelligence method that produces 

designs with specified features similar to the style and qualities of 

master architects, significantly enhancing the creativity and efficiency of 

the design process (Chen, 2023). These findings parallel the work of As 

and others, discussing the potential of deep learning to create 

conceptual designs by extracting fundamental building blocks based on 

functional performance criteria (As, Pal, & Basu, 2018). 

Integrating artificial intelligence into architectural design processes 

also brings a new perspective to the historical roots of architectural 

theory. In this context, it has been observed that analogies have been 

used as a significant tool for thinking in architectural design throughout 

history and have been classified in various forms by experts. Peter 

Collins' categorization of analogies into biological, mechanical, 

gastronomic, and linguistic categories demonstrates that design 

processes can be approached with inspiration from different disciplines 

(Collins, 1965). On the other hand, Abel classifies analogy models from a 

broader perspective as spiritual, semantic, utopian, traditional, organic, 

military, commercial, and mechanical, revealing the transformation of 

architecture in different periods and contexts and the elements that 

influenced it (Abel, 1979).  William Gordon's classification of analogies 

into symbolic, direct formal, individual, and cultural (Aydınlı, 1993), 

along with Tassoul's (2005) categories of personal, direct, paradoxical, 

natural, and fantastical analogies, provides a crucial framework for 

understanding the multifaceted use of analogy in architecture and its 

contribution to design processes.  

In this context, integrating deep learning and artificial intelligence 

into architectural design processes interacts with analogical thinking 

styles, offering new creative possibilities. Classifications such as Peter 

Collins' biological, mechanical, and linguistic analogies allow architects 

to develop a historical and interdisciplinary perspective. While 

addressing modern challenges such as sustainability and cultural 

significance, this approach combines artificial intelligence's extensive 

data sets and analysis capacity, integrating interdisciplinary knowledge 
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more effectively. Thus, integrating deep learning into architectural 

design should be considered a technological innovation and a holistic 

transformation that enriches the creative process and theoretical 

foundation. 

Integrating deep learning and analogical thinking in architecture 

represents a new research area with the potential to transform 

traditional design methods. In architectural design, deep learning 

models can play a significant role in categorizing architectural design 

examples into specific classes of analogical design. These models allow 

designers to analyze analogical design examples and uncover sources of 

inspiration. Recognizing the source of inspiration enables designers to 

develop creative solutions to new design problems. This process can 

enhance both creativity and efficiency in architectural design processes. 

In this context, the study aims to innovate in the design process by 

incorporating Peter Collins' analogical architectural design classification 

system. Using a dataset of 29,596 visual images created according to 

Collins' analogical architectural design classification, a deep learning 

model based on Convolutional Neural Networks (CNN) was developed. 

The CNN model achieved a learning accuracy of up to 98%. However, 

the accuracy rate was 86% during the testing phase. The study 

synthesizes the relationship between analogical thinking and deep 

learning, highlighting the applicability of integrating deep learning 

models into architectural design processes and opening new horizons 

for enhancing creativity through automation. 

 

THEORETICAL BACKGROUND 

The analogy is a similar relationship between objects or concepts 

based on standard features. In this context, analogy has become a 

cognitive component, especially in philosophical fields such as 

epistemology and ontology. Aristotle's transformation of analogy from a 

physical similarity into a cognitive tool in logic and science emphasizes 

the intellectual importance of this concept. The conceptual power of 

analogy is helpful for understanding, interpreting, constructing 

arguments, examining, and expanding knowledge. Bartha (2013) notes 

that analogical arguments have shaped philosophical and scientific 

thought since ancient times. Analogy is a fundamental part of the design 

process in architecture. Architectural works can be created by taking 

inspiration from other objects, structures, or concepts. This approach 

encourages creativity and enables architectural works to emerge from 

various perspectives. Analogical design creates new forms inspired by 

known facts by making inferences from the specific to the general. 

Consequently, adopting an analogical approach in architectural design 

facilitates interdisciplinary collaboration and the generation of 

innovative solutions, which enhances the significance of architectural 

works and enables them to establish a profound connection with the 

public. 
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Peter Collins' Classification of Analogical Design 

Analogies have been significant in the architectural process since 

ancient times. They are used to express thoughts and beliefs through 

architectural formations. Therefore, analogy has become a common 

practice in architecture. Scientists specializing in analogies have 

classified them into various categories (Aydınlı, 1993; Collins, 1965; 

Tassoul, 2005; Uraz, 1993). This study focuses on Peter Collins' 

classification, commonly used in the literature, rather than considering 

all the experts' separate classifications. This approach provides a basis 

for future studies to improve different classifications. In his book 

'Changing Ideals in Modern Architecture,' Peter Collins, an expert on 

analogy in architecture, classified analogies into four categories: 

Biological, Mechanical, Gastronomic, and Linguistic (Collins, 1965). This 

classification aids in comprehending the use of analogy in the design 

process. Analogous design involves generating new ideas inspired by 

existing known situations or objects. Collins' classification helps us 

understand designers' thinking processes and creative design outputs. 

Analogical thinking indicates that design is a cognitive activity (Ozkan & 

Dogan, 2013). This process demonstrates the designers' ability to apply 

existing knowledge to new problems, allowing for the emergence of 

creative solutions. Additionally, it has been observed that professionals 

working in design and engineering commonly use analogies (Goel, 

1997). Analogy enables designers to generate innovative solutions. 

Collins' classification is a significant reference for analogy in 

architecture and design. This classification aids in comprehending 

various aspects of using analogy in design thinking and provides a 

detailed examination of the design process. 

 

Biological analogy 

The relationship between architecture and biology has become more 

pronounced with the emergence of the organic architecture movement. 

Organic architecture emphasizes using natural forms and processes in 

building design to achieve a profound harmony between the building 

and its surroundings. The principle of functional adaptation observed in 

biological organisms is applied to building design in this context. 

Biological analogies have often been used to explain the formation of 

artistic and architectural products, from Herbert Spencer to Raymond 

Unwin and F.L. Wright (Uraz, 1993). Samuel Taylor Coleridge's concept 

of organic form emphasizes that buildings should have a structure 

resembling naturally evolved, unshaped structures, untouched by 

external interventions. 

In modern architecture, organic architecture is a fundamental 

concept that emphasizes harmony with nature, respect for local 

materials, and the importance of environmental factors. For example, 

F.L. Wright's approach to organic architecture advocates integrating 

buildings with their surroundings and drawing inspiration from natural 

forms. This principle has also influenced the designs of contemporary 
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architects (Ayyıldız, 2001). Architects such as Tadao Ando incorporate 

Japanese cultural and belief systems into their designs, thereby 

perpetuating the principle of organic architecture. This approach 

emphasizes the importance of a harmonious relationship between the 

built environment and nature. 

In this context, using biological analogies in architecture ensures that 

architectural design is in harmony with the natural environment and 

shaped to respond to human needs. Organic architecture adheres to the 

functional adaptation principles observed in biological organisms, 

combining functionality and aesthetics in building design, thus 

establishing a solid foundation (Kortan, 1992). Therefore, using 

biological analogies in architecture highlights the significance of 

interdisciplinary collaboration and promotes innovative solutions in the 

field. 

 

Mechanical analogy 

Mechanical analogies refer to the comparison between architectural 

structures and mechanical devices. This concept emerged in 18th-

century literature, highlighting the difference between mechanical and 

organic concepts (Collins, 1965). In architectural discourse, the debates 

surrounding mechanical analogies gained momentum towards the end 

of the 19th century. The early 20th century is widely regarded as a 

period in which technology played a significant role in architectural 

thought, often referred to as the 'age of the machine' (Artun & Balcıoğlu, 

1982). During this period, architectural texts focused on technology-

related themes, with architecture perceiving the machine as an aesthetic 

object. It was observed that the machine generated a 'mechanical 

aesthetic' within architectural space and became fetishized (Artun & 

Balcıoğlu, 1982). Antonio Sant Elia, a representative of Futurism in 

architecture, advocated for modern buildings to resemble giant 

machines (Kortan, 1991). Le Corbusier expressed his admiration for 

industrial products and emphasized the lessons to be learned from them 

in architectural creation (McLeod, 1996). In modern architecture, 

mechanical models were used to emphasize functional form. In High-

tech architecture, these models acquired a complete machine-like 

appearance (Uraz, 1993). Norman Foster is a prominent architect in the 

field of High-tech design. He is known for incorporating technology into 

his structures and drawing analogies to machines (Uraz, 1993). 

 

Gastronomic analogy 

In architectural art, gastronomy has emerged from discussions 

surrounding flavor and taste, positioning these concepts at the center of 

aesthetic evaluations. Building upon Croce's emphasis on the creative 

taste of the artist, investigations have been conducted into the impact of 

architectural works on individuals and their gratifying qualities (Croce, 

1983). This approach highlights the significance of aesthetic pleasure 

and preference in architecture. Within architectural literature, alongside 
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gastronomic analogies, there is an examination of how aesthetic attitude 

and sentiment can be expressed in architectural works. According to 

Tunalı, aesthetic attitude entails not only adopting a stance for 

enjoyment but also experiencing aesthetic pleasure towards an object 

(Tunalı, 2012). In this context, the concepts of aesthetic taste and 

preference in architecture are utilized to comprehend and assess the 

positive effects of a work on individuals. 

Gastronomic analogies are also employed to determine correct 

design principles in architecture. Fergusson has suggested that reading 

cookbooks can be beneficial in understanding architectural design 

principles (Alexander, 1979). This approach underscores the 

importance of flavor and taste concepts in architecture. The significance 

of Romantic and Picturesque influences in gastronomic discussions is 

also substantial. Picturesque denotes an artistic attitude aiming to 

mimic the randomness and diversity found in nature rather than 

adhering to mathematical arrangements, while Romanticism focuses on 

emotional and natural beauties (Tuğlacı, 1983). The influence of these 

movements in architecture has played a crucial role in determining how 

architectural works appeal to human emotions and sensations. 

In the works of renowned architects such as Carlo Scarpa, it is 

observed that the sense of taste predominates in architectural 

production. The structures created by Scarpa convey a pronounced 

sensation of taste uncommon in architectural works (Ayyıldız, 2001), 

thus reinforcing the significance and influence of taste and flavor 

principles in architectural design. Consequently, gastronomic analogies 

form the foundation of aesthetic evaluations in architecture and provide 

a significant tool for understanding the effects of work on individuals. 

Considering flavor and taste concepts in the design of architectural 

works can contribute to creating aesthetically satisfying and gratifying 

spaces. 

 

Linguistic analogy 

In architectural literature, language is defined as a set of elements 

and rules that enable the transmission and interpretation of thoughts, 

emotions, and desires within society (Aksan, 2000). However, 

considering language as a category in architecture is a relatively recent 

phenomenon and only came to the fore in the middle of the 20th century 

(Yücel, 1981). Some art philosophers, such as Bruce Allsopp, have 

approached architecture by adapting R.G. Collingwood's aesthetic 

theory to architecture, leading to linguistic analogies in architectural 

philosophy. Linguistic analogies offer superiority over biological and 

mechanical analogies because they better explain the expression of 

structure and human emotion through language's structural and 

semantic nature (Collins, 1965). Particularly with the critique of 

modernism, architectural language's meaning and structural character 

began to intersect with disciplines such as linguistics, semiotics, 

structuralism, and semantics. 
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According to Şentürer (1995), architecture uses language to express 

and convey messages. The importance of architectural language is also 

emphasized in the works of Robert Venturi, who claims that 

architecture's autonomous language has an abstract and conceptual 

structure that expresses the meaning of structures (Venturi, Brown, & 

Izenour, 1968). In Venturi's applications, it is observed that 

architectural language conveys precise and mass-oriented meanings 

(Akın, 1990). Consequently, linguistic analogies provide an essential 

tool for understanding and explaining language's structural and 

semantic character in architecture. The influence of language on 

architecture plays a crucial role in determining the meaning and 

expression of structures, thus enhancing the communicative power of 

architectural works. 

 

METHODOLOGY 

In this study, a Convolutional Neural Network (CNN), an artificial 

neural network model used in deep learning for tasks such as image 

classification and object detection, was developed and coded in the 

Google Colab environment. This neural network model forms the 

methodology of the study. 

 

Components of the Convolution Neural Network Model 

The CNN model is significant among artificial neural networks based 

on image processing. This model comprises a series of specialized layers 

designed to extract features from data and perform classification tasks. 

The CNN model includes an input layer, a convolutional layer, a Rectified 

Linear Units (ReLU) layer, a pooling layer, a flattened layer, and a fully 

connected layer. 

 

 
 

The input layer serves as the initial stage, ensuring subsequent layers 

receive data in a format suitable for processing. Raw image data is 

typically prepared in this layer to be forwarded to other model layers. 

The convolution layers are responsible for discovering the features of 

the object to be classified through elemental accumulations. Each filter 

aims to reveal a unique feature of the object. The output image obtained 

from these layers contains as many activation or feature maps as the 

number of filters used. The convolution layer typically applies to a 

Figure 1. An example of kernel size 

3x3 in the convolutional layer of 

channel 1. 
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matrix with dimensions of 3x3 or 5x5 as a filter to the input image 

(Figure 1). 

This layer operates on an image input with dimensions of 

W1xH1xD1. The convolution layer is characterized by the parameters K 

number of filters, F spatial extension, S stepping, and P zero padding. 

Each filter on the input image undergoes a convolution process to learn 

specific features. Applying the specified stepping and zero padding in 

the convolution process obtains the W2 × H2 × D2 dimensions output. 

These output dimensions are determined by mathematical expressions 

calculated based on the width, height, and depth dimensions of the input 

image (Equ. [1]-[3]) (Hatir, Barstuğan, & İnce, 2020). The input image's 

width, height, and depth dimensions are essential components of the 

convolution layer that enable extracting features from the image. 

 

W2 =
W1 − F + 2P

S
+ 1                              [1]           

H2 =
H1 − F + 2P

S
+ 1                                [2]       

D2 = K                                                             [3]       

 

The Rectified Linear Units (ReLU) layer, widely used in CNN models, 

is applied to the previous layer's output by reducing negative values to 

zero and leaving positive values unchanged. In the designed model, this 

layer is integrated after the convolution and fully connected layers. The 

pooling layer is typically applied after the ReLU layer in Convolutional 

Neural Networks (CNNs) (Figure 2). 

 

 
 

The primary purpose is to reduce the size of the input image while 

maintaining the depth of the image. This reduction in input size leads to 

a loss of information about the image. However, this reduces the 

computational cost of the subsequent network layer and prevents model 

overfitting. Max pooling is generally preferred as it tends to exhibit 

better performance. The proposed CNN model includes a pooling layer.  

Max pooling achieves this by selecting the most enormous value within 

each region. This layer uses P (i, j) to represent the element at position 

(i, j) in the output of the pooling layer. I (i. s+m, j. s+n) represents the 

Figure 2. MaxPooling layer 
example with 3x3 filter. 
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element at position (m, n) of the input matrix within the pooling region. 

The variable 's' represents the pooling step, and 'k' represents the size 

of the pooling region (Equ. [4]). 

 

P(i, j) = maxm,n I(i. s + m, j. s + n)                 [4] 

 

The flattening layer in the CNN model is typically used to convert the 

input data from matrix form into a flattened vector (Figure 3). This layer 

is responsible for converting feature maps into a format that can be 

inputted into the following fully connected layers, enabling the model to 

learn more complex features. 

 

 
 

The Fully Connected layer is usually positioned at the network's end 

and flattens the feature maps from previous convolutional and pooling 

layers. This process connects each pixel in the feature map to one 

another. These layers are commonly used for classification or regression 

tasks, utilizing the features learned by the network beforehand. 

However, when working with datasets with large input sizes, they may 

overfit and encounter factors such as computational intensity. 

Therefore, such networks often require regularization techniques (e.g., 

dropout, batch normalization) and architectural optimizations. The 

Fully Connected layer connects to all units in the preceding layer, with 

connections determined by weights. The general equation for fully 

connected layers is as follows (Equ. [5]): 

 

𝑦𝑖 = 𝑓 ( ∑ 𝑤𝑖𝑗 . 𝑥𝑖 + 𝑏𝑗

𝑛

𝑖=1
)                              [5] 

 

In this equation: 

• The output of the 𝑗-th unit in the fully connected layer is 

represented by 𝑦𝑖 . 

• The output of the 𝑖-th unit in the previous layer is represented by 

𝑥𝑖 . 

• The weight of the connection from the 𝑖-th unit to the 𝑗-th unit is 

denoted by 𝑤𝑖𝑗 . 

• The variable 𝑏𝑗 represents the bias of the 𝑗-th. 

• The activation function is represented by 𝑓(. ). 

Figure 3. Flatten layer example 

with 3x3 pooled feature map. 
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The categorical layer constitutes a stage utilized by Convolutional 

Neural Network (CNN) models to classify or predict class identifications. 

This particular layer commonly employs a mathematical function called 

"SoftMax" to transform the outcomes of the CNN network into 

probability distributions associated with various classes. Consequently, 

this layer generates a vector containing probability values linked to 

class identifications. This layer typically provides a probability value for 

each class in multi-classification dilemmas. The probability distributions 

generated by the model enable it to allocate input information to the 

appropriate classes effectively. Typically positioned as the final layer of 

the model, the categorical layer serves to solidify the ultimate output of 

the model. 

 

Data Collection 

This study has prepared a specialized visual dataset for processing 

by a CNN model. This dataset is organized according to Peter Collins' 

four categorical classifications based on the concept of analogy in 

architecture: biological (based on the form and function of living 

organisms), mechanical (based on the operational principles of 

machines), gastronomic (drawing aesthetic inferences from 

gastronomic processes), and linguistic (referencing the structural rules 

of language). The images are 1024x768 pixels in size and have a 

resolution of 72 dpi, chosen to optimize the temporal processing of the 

model and ensure that the images are distinguishable and perceivable 

by the CNN model. 

The dataset comprises 29,596 images, systematically organized into 

training, validation, and test sets. The training set contains 27,525 

images, the validation set 1,009 images, and the test set 1,062 images. 

This distribution has been strategically implemented to facilitate 

effective learning and evaluation of the CNN model. The images are 

categorized according to Collins' four analogical design classes: 3,133 

biological images, 8,352 mechanical images, 9,421 linguistic images, and 

6,619 gastronomic images (Table 1). This categorization is crucial for 

the model to recognize and classify architectural elements based on 

analogical reasoning. Data augmentation techniques have been 

employed to enhance the diversity and volume of the dataset. These 

techniques include random horizontal and vertical shifts, rotations, 

zooming, and reflections, contributing to the model's learning capacity 

and accuracy in object prediction. 

Table 1. A number of images used in analogy design classes. 

Class 
Number of images 

Test Train Validation 

Biological 474 3133 465 

Mechanical 161 8352 113 

Linguistic 118 9421 120 

Gastronomic 309 6619 311 

Total 1062 27525 1009 
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Data Analysis 

As illustrated in Figure 4, the classified images are processed within 

the CNN model to enable the artificial neural network to analyze the 

data. This process begins with transferring images, which constitute the 

analysis data, to the input layer of the CNN model. Initially, the first 

convolutional layer is applied, utilizing 32 filters of size 3x3 to extract 

fundamental features. At this stage, the ReLU (Rectified Linear Unit) 

activation function is employed to zero out negative values and retain 

positive values in the feature maps. Subsequently, the first layer 

performs a max pooling operation with a 2x2 filter size, reducing the 

spatial dimensions by half. 

In the second convolutional layer, 32 filters of size 5x5 are used to 

extract more complex and higher-level features. The ReLU activation 

function is again applied to zero out negative and preserve positive 

values. A second max pooling operation with a 2x2 filter size further 

halves the spatial dimensions. 

The third convolutional layer employs 32 filters of size 3x3 to extract 

more detailed and specific features. The ReLU activation function is 

applied once more, and a third max pooling operation with a 2x2 filter 

size is performed, further compacting the feature maps. After 

completing the convolutional and pooling layers, the resulting two-

dimensional feature maps are transformed into a one-dimensional 

vector through a flattening layer. This feature vector is fed into a fully 

connected layer, where class probabilities are calculated using four 

neurons. Finally, in the classification layer, the sigmoid activation 

function obtains probability values between 0 and 1 for each class, thus 

providing the classification result for the input data. 

 

 
 

EXPERIMENTAL FINDINGS 

The dataset consists of 5000 visual images divided into four distinct 

classes: biological, mechanical, linguistic, and gastronomic. However, a 

larger dataset of 29,596 architectural images was generated to train the 

model effectively using data augmentation techniques, such as random 

horizontal and vertical shifting, rotation, zooming, and reflection (Figure 

5). This augmentation aims to improve the model's learning capacity 

and increase the accuracy of object prediction. The CNN model was 

trained using 27,525 images, with 1,062 for testing and 1,009 for 

validation. The training dataset consists of 3,133 biological images, 

8,352 mechanical images, 9,421 linguistic images, and 6,619 

Figure 4. Proposed stages for 

deep learning processing. 
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gastronomic images. The test dataset includes 474 biological images, 

161 mechanical images, 118 linguistic images, and 309 gastronomic 

images. Meanwhile, the validation dataset consists of 3,133 biological 

images, 465 mechanical images, 120 linguistic images, and 311 

gastronomic images. The training process used a batch size of 64 and 

lasted 24 epochs. 

 

 
 

The Deep Learning model displays the convergence graph obtained 

due to the learning process performed on the training dataset in Figure 

6. In the training phase, 98 % accuracy was achieved in four classes of 

29596 images. The accuracy values in the validation data reached 80-86 

% after the 20th epoch. Figure 6 displays the accuracy and loss plots of a 

CNN model trained over 25 epochs on a dataset containing analogy 

architectural classes. 

 

 
 

The model architecture includes convolutional, max pooling, 

flattened, and fully connected layers. The plots demonstrate that 

training and validation accuracy increases as training progresses while 

training and validation losses decrease. The model achieved high 

Figure 5. Training dataset in the 

deep learning process. 

Figure 6. Accuracy and Loss of 

Convergence Graphs of CNN 

Model. 
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accuracy (1.2%) and low loss (0.2) on the training data, indicating 

effective learning. However, the higher training accuracy and loss 

compared to the validation accuracy (1%) and loss (0.4%) suggest a risk 

of overfitting. Overfitting happens when the model memorizes the 

training data and cannot generalize new data. Various methods can be 

employed to mitigate this risk. These include increasing the amount of 

training data, utilizing data augmentation techniques, exploring 

different model architectures, and applying regularization techniques. 

Additionally, it is essential to consider factors such as dataset size and 

complexity, the optimization algorithm used, and tuning the model's 

hyperparameters to evaluate its performance better. 

The model achieved an accurate rate of 86% on the test data. The 

confusion matrix obtained at this stage is shown in Figure 7. The model 

faces difficulty extracting the intrinsic qualities of images when 

classifying architectural images of the four classes in the dataset due to 

the presence of concrete and abstractly designed architectural 

structures. Despite the challenge, the model successfully classified the 

four classes with the desired accuracy. The reduction of the learning 

rate parameter resulted in a decrease in both classification accuracy and 

training time. Graphs indicate that deep learning algorithms tend to 

learn more general features as the learning rate decreases. The model in 

this study presents training durations and accuracy values based on 

data weights. The classification results show a 98% accuracy rate. The 

best outcome was obtained using a learning rate parameter 10000e-04 

and a batch size of 10. 

 

 
 

The CNN model produced analogical design classes as outlined by 

Collins. Table 2 displays its classification performance for the four 

classes: biological, gastronomic, linguistic, and mechanical. The 

precision, recall, and F-measure values yielded an average of 86-87% 

Figure 7. Understanding the 

Confusion Matrix in the CNN 

Model. 
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accuracy. In the Biological Analogy class, the model's classification 

achieved a precision of 0.96. However, the recall value was lower at 

0.73, indicating that some biological analogies may not have been 

accurately recognized. The F-Measure, representing the balance 

between precision and recall, was 0.83. In the Gastronomic Analogy 

class, precision was measured at 0.81 and recall at 0.90. The model 

demonstrated balanced performance in recognizing gastronomic 

analogies with an F-measure of 0.85.  In the Linguistic Analogy class, 

precision and recall values were 0.82 and 0.95, respectively, indicating a 

tendency to recognize linguistic analogies with high precision, resulting 

in an F-Measure of 0.88. Precision and recall values were measured at 

0.89 and 0.90 for the Mechanical Analogy class, respectively. The model 

demonstrated a successful ability to recognize mechanical analogies, 

achieving an F-measure of 0.90.  

Table 2. Performance values of the model according to analogical design classes 

Class Precision Recall F-Measure 

Biological Analogy 0.96 0.73 0.83 

Gastronomic Analogy 0.81 0.90 0.85 

Linguistic Analogy 0.82 0.95 0.88 

Mechanical Analogy 0.89 0.90 0.90 

Macro Average 0.87 0.87 0.86 

Weighted Average 0.87 0.86 0.86 

 

The Macro Average and Weighted Average values summarized the 

performance across all classes. The Macro Average provided an equally 

weighted average for each class, while the Weighted Average indicated 

the weighted average based on the sample sizes of the classes. In this 

context, the model's average precision, recall, and F-Score were 

determined to be 0.87, 0.87, and 0.86, respectively. 

 

DISCUSSION 

Integrating artificial intelligence into architectural design processes 

transforms how architects conceptualize and execute projects. The 

studies by Hegazy and Saleh demonstrate that AI can facilitate 

parametric explorations by generating various design alternatives based 

on defined parameters, thereby expanding creative possibilities in 

architectural practice (Hegazy & Saleh, 2023). Zakariya's research 

highlights the innovative use of AI art platforms in mosque facade 

design, showcasing AI's role in enhancing aesthetic evaluations suitable 

for cultural contexts (Zakariya, 2023). This intersection of technology 

and creativity makes the design process more efficient and promotes a 

more inclusive approach to architectural expressions. 

In light of these developments, integrating Peter Collins' analogical 

design classification with the deep learning model CNN presents a 

significant innovation in architecture. Achieving a training accuracy of 

98% indicates that analogical thinking categories can be effectively 

combined with deep learning models. However, while this classification 

has been successful with biological and gastronomic analogies, it faces 
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challenges with linguistic and mechanical analogies. The model's 

validation accuracy of 86% suggests that the distinctive features of 

classification, particularly in linguistic and mechanical analogies, have 

not been fully analyzed. Nevertheless, the accuracy of the 98% training 

demonstrates the successful integration of analogical thinking 

categories into the deep learning model. 

This success could serve as an inspiration for future studies. The 

model's performance can be further enhanced by expanding the dataset 

and optimizing the learning rate. The broader application of AI in 

architecture, enabled by the model's versatility across various fields and 

architectural topics, facilitates the rapid classification of studies and the 

seamless integration of new information. The following could help 

bridge the gap between traditional and innovative design in 

architecture. However, there are limitations in extracting specific 

architectural features, necessitating further exploration in future 

research. Additionally, evaluating the model's performance across 

different architectural styles and expanding the categories of analogical 

design could be addressed in future studies. 

In conclusion, this study successfully integrates the analogical 

thinking of architecture with deep learning models. However, further 

work is needed to achieve tremendous success in expanded application 

areas and to overcome specific challenges. 

 

CONCLUSION 

This study aims to develop a method for identifying architectural 

designs using deep learning within Peter Collins' analogy architectural 

design classification framework. The deep learning model extracts 

design patterns from a diverse architectural dataset and identifies 

significant similarities and differences between architectural styles. 

Collins' classification framework integrates design patterns and 

associates them with characteristics specific to different stages of the 

architectural design process. The model enables designers to improve 

the quality and diversity of their designs by using a data-driven and 

analytical approach to the architectural design process. 

The study focused on understanding the importance of analogy 

designs in architectural design and evaluating the effectiveness of deep 

learning models. The results show that the deep learning model 

correctly classified architectural elements with 98% accuracy during the 

training phase. On test data, the model achieved 86% accuracy. When 

classifying the architectural images in the data set prepared for the deep 

learning model, particular and abstractly designed architectural works 

made it difficult to extract the essence of the images. This resulted in the 

model achieving 86% learning accuracy on the test data. The deep 

learning model can be increased to an accuracy level of 95% or more for 

classifications with entirely distinctive features. The successful 

performance of the model despite images lacking fully discriminative 

features was attributed to reducing the learning rate parameter and 
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setting the fragment size to a specific value. Peter Collins divided the 

analogy designs into biological, mechanical, gastronomic, and linguistic 

categories. This made it easier for the deep learning model to identify 

similarities between architectural elements. The model's ability to draw 

inspiration from different aspects of architectural design and creatively 

integrate them into projects is demonstrated. The study demonstrates 

the contribution of the deep learning model to the architectural design 

process by identifying similar designs and adding unique elements to 

projects. It provides a valuable perspective on the dynamic relationships 

between tradition, innovation, and inspiration in the interaction 

between architecture and artificial intelligence disciplines. 
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